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Abstract

This work gives an algorithm for computing the degrees of freedom of estimators of Allan
and Hadamard variances, including their modified versions. A consistent approach is used
throughout.

1 Introduction

This work gives a method of determining error bars for measurements of frequency stability vari-
ances in the presence of power-law phase noises. For Allan variance and modified Allan variance,
this subject has been studied extensively for about thirty years ([1]—[13]), although no such work
on the Hadamard variance has been published. Recognizing that these variances are all special
cases of a single general form, we have found a consistent approach to computing the measurement
uncertainty of these variances. The goal is not closed formulas but a readily programmed algorithm
that gives numerical results whose accuracy is adequate for the purpose at hand. Although the
algorithm given here is divided into cases, all the calculations are based on the same theoretical
principles, with no empirical formulas.

The stability variances used in the time and frequency field fall into two categories: unmodified
variances, which use dth differences of phase samples for d = 2 or 3, and modified variances, which
use dth differences of averaged phase samples. The Allan variances correspond to d = 2, the
Hadamard variances to d = 3; the modified Hadamard variance is also called the pulsar variance
[14]. By modeling the differences as an ergodic stationary process, one can define the corresponding
variance as a scaling factor times the expected value of the squared differences. One can then obtain
unbiased estimates of this variance from available phase data by computing time averages of the
squared differences. The usual choices for the estimation stride (the time step) are the sample period
τ0 and the averaging period τ , a multiple of τ0. These give respectively the overlapped estimator
(OE) and nonoverlapped (NOE) estimator of the stability variance (although “nonoverlapped” is
a misnomer; there is always some overlap except in certain studies of Allan variance [1][9] where
the stride is 2τ).

We insist on maintaining the distinction between a stability variance and its estimators; for
each variance we treat both the OE and NOE. This distinction is not always made in the literature,
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where one often sees the modified Allan variance being defined as its OE. Even though the OE of
Allan variance has lower uncertainty than the NOE (but not always [15]), the NOE is convenient
when phase data are processed in real time or read sequentially from a file.

2 Scope

The algorithm covers the following situations.

• Phase noise spectrum that follows an asymptotic low-frequency power law, Sx (f) ∼ Cfα−2
as f → 0, for integral α, 2 ≥ α ≥ −4 (white FM to random run FM). For each τ one must
choose a dominant power law; see [16] for a method of power-law identification. The phase is
assumed to be approximately bandlimited to the Nyquist frequency of the sampling period.

• Order of phase differencing d = 1, 2, or 3. (We include d = 1 for completeness.) For a given
α, d has to be high enough to make the dth phase differences stationary, that is, 2d+ α > 1.
Further, the dth phase differences are modeled as a mean-zero Gaussian process.

• For each d, the modified and unmodified variances.
• For each variance, the overlapped and nonoverlapped estimator.

Effects of trend removal, especially drift removal for d = 2, are not covered; the dth phase
differences are assumed to have mean zero. One can use d = 3 to obtain stability results that are
invariant to linear frequency drift. Special long-term stability estimators, such as total variance
[17] and Theo1 [18], are not covered; these require their own treatments.

3 Theory of operation

Although the presentation of the algorithm is self-contained, here is a brief account of the theory
behind it. The algorithm’s output is the effective degrees of freedom (edf) of an unbiased estimator
V of a stability variance σ2 = EV . Define

ν = edf V =
2 (EV )2

varV
=

2σ4

varV
; (1)

thus, edf V codes the normalized uncertainty
√
varV /EV . For these estimators, it has been ob-

served empirically (but not systematically) that
¡
ν/σ2

¢
V has approximately a χ2ν distribution. Hav-

ing computed ν and observed V , one can obtain confidence intervals of form νV/x2 ≤ σ2 ≤ νV/x1
from χ2ν levels x1 and x2 [7].

The model for phase x (t) is the τ0-difference of a pure power-law process:

x (t) = ∆τ0w (t) , (2)

where w (t) is a continuous-time process with spectral density Cfα−4 for all f > 0, and ∆ is the
backward difference operator. Then Sx (f) is asymptotically proportional to fα−2 as f → 0 and
has approximate bandwidth 1/ (2τ0); this is the first reason for using w (t).

Now let
z (t) = ∆dτ∆εw (t) , (3)
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where ε = τ0 or τ . For ε = τ0 we have z (t) = ∆dτx (t), which leads to the unmodified variance. For
ε = τ = mτ0 we observe from (2) that

∆τw (t) = w (t)− w (t−mτ0) =
m−1X
n=0

∆τ0w (t− nτ0) =
m−1X
n=0

x (t− nτ0) = mx̄ (t) ,

where x̄ (t) is a τ -average value of the samples of x. Thus, z (t) = ∆d+1τ w (t) leads to the modified
variance [13]; this is the second reason for using w (t). In either case we assume that z (t) is a
stationary mean-zero Gaussian process.

Ignoring the conventional scaling factors, we define the stability variance and its estimator by

σ2 = Ez2 (t) , V =
1

M

MX
n=1

z2 (nδ) , (4)

where the stride δ is τ0 or τ for the OE and NOE, respectively. The number of terms M depends
on the estimator and the number of data. Then EV = σ2. Let sz (t) = Ez (u+ t) z (u). Then
cov

£
z2 (t) , z2 (u)

¤
= 2s2z (u− t), and

varV =
2

M2

MX
n1,n2=1

s2z ((n2 − n1) δ) . (5)

The definition (1), after substitution of (5), simplifies to

1

edf V
=
1

M

1 + 2

s2z (0)

M−1X
j=1

µ
1− j

M

¶
s2z (jδ)

 . (6)

The autocovariance sz (t) is obtained from (3) by applying a difference operator of order 2d+2
to the generalized autocovariance (GACV) sw (t) of the power-law process w (t) [15]:

sz (t) = (∆τ∆−τ )d∆ε∆−εsw (t) .

The GACV of w (t) is tabulated below as a function of α.

4 Algorithm for edf calculation

Our purpose is to obtain practical numerical approximations of (6). We give two versions of the
algorithm: the simplified version simply truncates the sum in the exact formula; the full version
maintains the number of summation terms below a presassigned threshold and avoids catastrophic
roundoff errors. They have the same inputs, output, function definitions, and initial step. Some
explanation of the approximations is given in appendix A. Because the results are invariant to time
scaling, we may set τ = 1, τ0 = 1/m.

All arithmetic is to be carried out in double-precision floating point. Operations that give signed
integers are the floor function bxc (greatest integer that is ≤ x) and ceiling function dxe = − b−xc
(least integer that is ≥ x).
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4.1 Inputs

α = frequency noise exponent
α = 2, 1, 0,−1,−2,−3,−4
Noise type = WHPM, FLPM, WHFM, FLFM, RWFM, FWFM, RRFM

d = order of phase difference
d = 1: first-difference variance
d = 2: Allan variance
d = 3: Hadamard variance
Restriction: α+ 2d > 1

m = averaging factor τ/τ0, positive integer
F = filter factor

F = 1: modified variance
F = m: unmodified variance

S = stride factor (estimator stride = τ/S)
S = 1: nonoverlapped estimator
S = m: overlapped estimator

N = number of phase data with sample period τ0

4.2 Output

edf = effective degrees of freedom of variance estimator

4.3 Constant and function definitions

Set an integer constant Jmax (used only in the full version); I suggest Jmax = 100.
The formal arguments of the following functions have the same names as the input arguments

of the main algorithm.
1. Define the function sw (t,α) as follows:

α 2 1 0 −1 −2 −3 −4
sw (t,α) − |t| t2 ln |t| |t|3 −t4 ln |t| − |t|5 t6 ln |t| |t|7 . (7)

The entries with ln |t| must evaluate to 0 when t = 0.
2. Define the function

sx (t, F,α) = F
2∆1/F∆−1/F sw (t,α)

= F 2
·
2sw (t,α)− sw

µ
t− 1

F
,α

¶
− sw

µ
t+

1

F
,α

¶¸
, (8)

sx (t,∞,α) = sw (t,α+ 2) , −4 ≤ α ≤ 0.

3. Define the function

sz (t, F,α, d) = (∆1∆−1)d sx (t, F,α) , d = 1, 2, 3; (9)

that is (with dependence on F and α suppressed on the right sides),

sz (t, F,α, 1) = 2sx (t)− sx (t− 1)− sx (t+ 1) ,

sz (t, F,α, 2) = 6sx (t)− 4sx (t− 1)− 4sx (t+ 1) + sx (t− 2) + sx (t+ 2) ,
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sz (t, F,α, 3) = 20sx (t)− 15sx (t− 1)− 15sx (t+ 1)
+ 6sx (t− 2) + 6sx (t+ 2)− sx (t− 3)− sx (t+ 3) .

4. Define the function

BasicSum(J,M,S, F,α, d) = s2z (0, F,α, d) +

µ
1− J

M

¶
s2z

µ
J

S
, F,α, d

¶
+ 2

J−1X
j=1

µ
1− j

M

¶
s2z

µ
j

S
, F,α, d

¶
. (10)

4.4 Initial steps for both versions

1. Compute M , the number of summands in the estimator, as follows:

L = m

µ
1

F
+ d

¶
,

M = 1 +

¹
S (N − L)

m

º
(11)

if N ≥ L, otherwise there are not enough data.
2. Let

J = min (M, (d+ 1)S) . (12)

4.5 Main procedure, simplified version

This is just one step:
1

edf
=

1

s2z (0, F,α, d)M
BasicSum(J,M,S, F,α, d) . (13)

To check the effect of the truncation, one can also try a larger value of J , say min (M, 6S).

4.6 Main procedure, full version

Let r =
M

S
.

There are four cases. The calculations use coefficients from three numerical tables.

4.6.1 Case 1. Modified variances: F = 1, all α

This case also applies to unmodified variances when F = m = 1.
If J ≤ Jmax

1

edf
=

1

s2z (0, 1,α, d)M
BasicSum(J,M,S, 1,α, d)

Else if J > Jmax and r ≥ d+ 1, take a0,a1 from Table 1; then

1

edf
=
1

r

³
a0 − a1

r

´
Else let m0 =

Jmax
r

(not necessarily an integer); then

1

edf
=

1

s2z (0, 1,α, d)Jmax
BasicSum

¡
Jmax, Jmax,m

0, 1,α, d
¢
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4.6.2 Case 2. Unmodified variances, WHFM to RRFM: F = m, α ≤ 0
If J ≤ Jmax

If m (d+ 1) ≤ Jmax then let m0 = m else let m0 =∞. Then
1

edf
=

1

s2z (0,m
0,α, d)M

BasicSum
¡
J,M,S,m0,α, d

¢
Else if J > Jmax and r ≥ d+ 1, take a0,a1 from Table 2; then

1

edf
=
1

r

³
a0 − a1

r

´
Else let m0 =

Jmax
r

(not necessarily an integer); then

1

edf
=

1

s2z (0,∞,α, d)Jmax
BasicSum

¡
Jmax, Jmax,m

0,∞,α, d¢
4.6.3 Case 3. Unmodified variances, FLPM: F = m, α = 1

If J ≤ Jmax
1

edf
=

1

s2z (0,m, 1, d)M
BasicSum(J,M,S,m, 1, d)

Remark: For this case, m must be less than about 1e6 to avoid roundoff error.
Else if J > Jmax and r ≥ d+ 1, take a0,a1 from Table 2 (α = 1), b0, b1 from Table 3; then

1

edf
=

1

(b0 + b1 lnm)
2 r

³
a0 − a1

r

´
Else let m0 =

Jmax
r

(not necessarily an integer); then

1

edf
=

1

(b0 + b1 lnm)
2 Jmax

BasicSum
¡
Jmax, Jmax,m

0,m0, 1, d
¢

4.6.4 Case 4. Unmodified variances, WHPM: F = m, α = 2

This calculation is exact, and can be expressed in closed form. In these formulas,
µ
n

k

¶
denotes the

binomial coefficient
n!

k! (n− k)! .
Let K = dre.
If K ≤ d

1

edf
=
1

M

1 + 2µ
2d

d

¶2 K−1X
k=1

µ
1− k

r

¶µ
2d

d− k
¶2

Else
1

edf
=
1

M

³
a0 − a1

r

´
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where

a0 =

µ
4d

2d

¶
µ
2d

d

¶2 , a1 =
d

2
,

also given in Table 2 (α = 2).

4.7 Tables

Table 1. Coefficients for modified variances
d = 1 d = 2 d = 3

α a0 a1 a0 a1 a0 a1
2 2

3
1
3

7
9

1
2

22
25

2
3

1 0.840 0.345 0.997 0.616 1.141 0.843
0 1.079 0.368 1.033 0.607 1.184 0.848
−1 1.048 0.534 1.180 0.816
−2 1.302 0.535 1.175 0.777
−3 1.194 0.703
−4 1.489 0.702

Table 2. Coefficients for unmodified variances
d = 1 d = 2 d = 3

α a0 a1 a0 a1 a0 a1
2 3

2
1
2

35
18 1 231

100
3
2

1 78.6 25.2 790. 410. 9950. 6520.
0 2

3
1
6

2
3

1
3

7
9

1
2

−1 0.852 0.375 0.997 0.617
−2 1.079 0.368 1.033 0.607
−3 1.053 0.553
−4 1.302 0.535

Table 3. Coefficients for logarithmic denominator, unmodified variances, FLFM (α = 1)

d = 1 d = 2 d = 3
b0 b1 b0 b1 b0 b1
6 4 15.23 12 47.8 40

5 Examples

6 Conclusions
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A Explanation of approximations

As is, (6) is unfit for numerical computation. We find empirically that s2z (t) tends rapidly to zero
as t increases beyond d. For the accuracy needed here (a few percent), there is no point in allowing
j/S to be more than d + 1. Indeed, for sufficiently large t the calculation of s2z (t) blows up from
roundoff error, even in double precision, because linear combinations of large sw values are taken
to get small sz values. At the very least, one should truncate the sum at j = (d+ 1)S, as in the
simplified version of the algorithm.

The full version of the algorithm uses the following general strategy. If J ≤ Jmax we do the
summation (6). When J > Jmax there are two cases. First, if M ≥ (d+ 1)S then S = m ≥
Jmax/ (d+ 1) >> 1. We truncate the sum at (d+ 1)S and approximate it by an integral; this gives

1

edf Vd
≈ 1
r

Z d+1

0

µ
1− t

r

¶
s2z (t) dt

=
1

r

³
a0 − a1

r

´
,

where

r =
M

S
, a0 = 2

Z d+1

0
s2z (t) dt, a1 = 2

Z d+1

0
s2z (t) tdt.

These coefficients can be evaluated in advance. Second, if M < (d+ 1)S then we do another
summation in which J is reduced from M to Jmax and S is reduced proportionately from m.

The extra term for j = J in BasicSum makes the sum a trapezoidal approximation to the
integral, whether or not the sum is truncated.

This method works straightforwardly for Case 1; indeed, in this setting the modified variances
are simpler than the unmodified ones. In Case 2, when m is large we compute sz (t) using the
limiting form sx (t,∞), which is actually −s00w (t). This means that we are treating x (t) as w0 (t),
the process w (t) being differentiable in the mean-square sense.

The most troublesome case is the short-stride estimators of the unmodified variances for FLPM.
As S = m→∞, sz (t) approaches a function with logarithmic singularities. The factor b0+ b1 lnm
is an asymptotic form of sz (0). It would be possible (though inconvenient) to add another large-m
subcase as in Case 2, but one does not expect FLPM to be the dominant noise type when m is
large.

Case 4 is constructed by knowing that the phase samples are accurately uncorrelated when w (t)
is a Wiener process. The simplified computation (13) is correct but wasteful because sz (t) is a
linear combination of hat-shaped peaks of width 2/m.
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